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AP-C Objectives (from College Board Learning Objectives for AP Physics)
Rotational Kinematics

Understand and apply relationships between translational and rotational kinematics.
Use the right hand rule to determine the direction of the angular velocity vector.

Moment of Inertia

Rotational Dynamics

Conservation of Energy with Rotation

Determine the angular acceleration of an object when an external torque or force is 
applied.
Determine the radial and tangential acceleration of a point on a rigid object.
Analyze problems involving strings and massive pulleys.

Apply conservation of energy to problems of fixed-axis rotation.
Apply conservation of energy to objects undergoing translational and rotational 
motion.

Analyze problems involving objects that roll with and without slipping.

Determine by inspection which set of symmetrical objects of equal mass has the 
greatest moment of inertia.
Determine by what factor an object’s moment of inertia changes if its dimensions 
are increased by a consistent factor.
Calculate the moment of inertia for a collection of point masses, a thin rod of 
uniform density, and a set of coaxial cylindrical shells.
State and apply the parallel-axis theorem (PAT).

Torque
Calculate the torque on a rigid object.
Apply conditions of translational and rotational equilibrium to analyze a rigid object 
under the influence of coplanar forces applied at different locations.
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AP-C Objectives (from College Board Learning Objectives for AP Physics)
Rotational Kinematics

Understand and apply relationships between translational and rotational kinematics.
Use the right hand rule to determine the direction of the angular velocity vector.
Calculate the area under a force versus time graph and relate it to the change in momentum of an object.

Angular displacements (Δθ) can be measured in degrees (°) or in 
radians.  One revolution is 360°, or 2π radians.  The distance around a 
circle, known as the circumference, is equal to 2π multiplied by the 
length of the radius.  This length is typically written as Δs.  You can 
convert from linear displacement to angular displacement using Δs=rΔθ.

Radians

Linear speed / velocity is given by v.  Angular speed / velocity is given by ω.

Velocity

v = d
s
dt

ω = d

θ
dt

Direction of Angular Velocity 
Vector given by Right Hand Rule

Translational vs. Rotational Variables

Conversion Between Translational and Rotational
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AP-C Objectives (from College Board Learning Objectives for AP Physics)
Moment of Inertia

Determine by inspection which set of symmetrical objects of equal mass has the greatest moment of inertia.
Determine by what factor an object’s moment of inertia changes if its dimensions are increased by a consistent factor.
Calculate the moment of inertia for a collection of point masses, a thin rod of uniform density, and a set of coaxial cylindrical shells.
State and apply the parallel-axis theorem (PAT).

Inertial mass, also known as translational inertia, (m), is an object’s ability to resist a linear acceleration, which correlates to how much “stuff” makes up an object.

Moment of Inertia, also known as rotational inertia (I), describes an object’s resistance to a rotational acceleration.

Objects that have most of their mass near their axis of rotation have a small rotational inertia, while objects that have more mass farther from the axis of rotation have larger rotational inertias.

Types of Inertia

KE of a Rotating Disc

Ki =
1
2mivi

2 v=ωR⎯ →⎯⎯ Ki =
1
2miω

2ri
2

Ktotal = Ki
i
∑ = ω2

2 miri
2 I= mr2∑⎯ →⎯⎯⎯

i
∑

Ktotal =
1
2 Iω

2

I = mr 2∑ = r 2 dm∫
Calculating Moment of Inertia (I)

Find the moment of inertia of two 5 kg bowling balls joined by a meter-long rod 
of negligible mass when rotated about the center of the rod.  Compare this to 
the moment of inertia of the object when rotated about one of the masses.

Moment of Inertia of Point Masses

I = mr 2∑ = m1r1
2 +m2r2

2

I = 5× 0.52 +5× 0.52

I = 2.5 kg im2

I = mr 2∑ = m1r1
2 +m2r2

2

I = 5×12 +5× 02

I = 5 kg im2

Find the moment of inertia of a uniform solid cylinder about its axis.

Moment of Inertia of a Solid Cylinder

Define a volume mass density, ρ, as the total mass divided by the volume of the 
cylinder: ρ=M/(πR2L).  A differential of mass, then, is the mass of a thin, hollow cylindrical 
shell of width dr and area 2πrL.  The total differential of mass, then, is the volume of the 
hollow cylindrical shell multiplied by the volume mass density, so dm=2πrL(dr)(ρ).

I = r 2 dm∫ dm=2πrL(dr )(ρ )⎯ →⎯⎯⎯⎯ I = r 2 (2πρLr dr) =
r=0

R

∫
2πρL r3 dr

0

R

∫ = 2πρL R
4

4
ρ= M
πR2L⎯ →⎯⎯ I = 2πLMR

4

4πR2L
→

I = 1
2 MR

2

Given the moment of inertia of a rod around 
its center (I=ML2/12), use the PAT to find the 
moment of inertia of a rod about its end.

Example: Find Moment of Inertia of 
a Rod About One End using PAT Iend = Icenter +md

2 = ML
2

12
+ M L

2
⎛
⎝⎜

⎞
⎠⎟

2

→

Iend =
ML2

12
+ ML

2

4
= ML

2

3

Il ' = Il +md
2

If you know the moment of inertia of any object through an axis intersecting the center of 
mass of the object (l), then you can find the moment of inertia around any axis parallel to l.

Parallel Axis Theorem (PAT)

Find the moment of inertia of a uniform rod about its end, compare to the moment of inertia of the rod about its center.
Moment of Inertia of a Uniform Rod About Its End and About Its Center

Define a linear mass density, λ, equal to the total mass M divided by the length L.  Then, dm=λdx.

I = r 2 dm∫ dm=λdx⎯ →⎯⎯ I = x2λdx→
x=0

x=L

∫
I = λ x2 dx = λ L

3

3
λ= ML⎯ →⎯⎯

0

L

∫ I = M
L
L3

3
→

I = 1
3 ML

2

I = r 2 dm∫ dm=λdx⎯ →⎯⎯ I = x2λdx→
x=− L2

x= L2∫

I = λ x2 dx = λ
3
L3

8
− −L3

8
⎛
⎝⎜

⎞
⎠⎟
= λ
3
L3

4
λ= ML⎯ →⎯⎯

− L2

L
2∫

I = M
L

⎛
⎝⎜

⎞
⎠⎟
L3

12
⎛
⎝⎜

⎞
⎠⎟
→ I = ML

2

12

Rotating About the End Rotating About the Center
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AP-C Objectives (from College Board Learning Objectives for AP Physics)
Torque

Calculate the torque on a rigid object.
Apply conditions of translational and rotational equilibrium to analyze a rigid object 
under the influence of coplanar forces applied at different locations.

Torque (𝜏) is a force that causes an object to turn.  It must be 
perpendicular to the displacement to cause a rotation, and the 
further it is away from the point of rotation, the more leverage 
you obtain, so this distance is known as the lever arm (r).

Torque is a vector, and its direction is given by the right hand 
rule.  Point the fingers of your right hand in the direction of the 
line of action, and bend the fingers of your right hand in the 
direction of the force.  Your thumb will then point in the direction 
of the torque vector.  Note that the direction of the torque vector 
is perpendicular to the plane made by the displacement and 
force vectors.

Torque

The direction of the torque vector is perpendicular to both the position 
vector and the force vector.  You can find the direction using the right-hand 
rule.  Point the fingers of your right hand in the direction of the line of 
action, and bend your fingers in the direction of the force.  Your thumb 
then points in the direction of your thumb.  Note that positive torques are 
cause counter-clockwise rotations, and negative torques cause clockwise.

τ = r ×

F

τ = rF sinθ

Static equilibrium implies that the net force and the net torque are zero, and 
the system is at rest.

Dynamic equilibrium implies that the net force and the net torque are zero, 
and the system is moving at constant translational and rotational velocity.

EquilibriumTranslational vs. Rotational N2Law
Fnet = m

a
τnet = I

α

A 10-kg tortoise sits on a see-saw 1 meter from the fulcrum.  Where must a 2-kg 
hare sit in order to maintain static equilibrium?  What is the force on the fulcrum?

See Saw Sample Problem τnet = I
α = 0→

(10g)(1m)− (2g)x = 0→
x = 5m


Fnet = m

a = 0→
−10g + Ffulcrum − 2g = 0→

Ffulcrum = 12g = 120N

τnet = Iα→−Mg cosθ L
2

⎛
⎝⎜

⎞
⎠⎟
= Iα→ α = −Mg cosθL

2I
I=ML

2

3⎯ →⎯⎯ α = −3g cosθ
2L

Iend = Icm +md
2 PAT⎯ →⎯⎯ Iend =

ML2

12
+ M L

2
⎛
⎝⎜

⎞
⎠⎟

2

= ML
2

3

A beam of mass M and length L has a moment of inertia about its 
center of ML2/12.  The beam is attached to a frictionless hinge at 
an angle of 45° and allowed to swing freely.  Find the beam’s 
angular acceleration.

Beam Sample Problem

A light string attached to a mass m is 
wrapped around a pulley of mass mp and 
radius R.  Find the acceleration of the mass.

Non-Ideal Pulley with Mass Problem

τnet = Iα
τ=RT
I= 12mpR

2⎯ →⎯⎯⎯ RT = 1
2mpR

2( )α→
T = 1

2mpRα
a=Rα⎯ →⎯⎯ T = 1

2mpa

mg −T = ma T= 12mpa
⎯ →⎯⎯ mg − 1

2mpa = ma→

mg = a m+
mp
2

⎛

⎝⎜
⎞

⎠⎟
→ a = mg

m+ mp
2
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AP-C Objectives (from College Board Learning Objectives for AP Physics)
Rotational Dynamics

Conservation of Energy with Rotation

Determine the angular acceleration of an object when an external torque or force is applied.
Determine the radial and tangential acceleration of a point on a rigid object.
Analyze problems involving strings and massive pulleys.

Apply conservation of energy to problems of fixed-axis rotation.
Apply conservation of energy to objects undergoing translational and rotational motion.

Ktranslational =
1
2mv

2

Krotational =
1
2 Iω

2

Ktotal = Ktranslational + Krotational

Because objects may have both translational and rotational kinetic energy, we 
must now take into account that the total kinetic energy of an object is the sum 
of its translational kinetic energy (use the velocity of the center of mass) and its 
rotational kinetic energy (using the moment of inertia about its point of rotation).

Conservation of Energy

R

H

Find the speed of a disc of radius R which starts at rest and rolls down an incline of height H.
Energy Conservation with Rolling

ICMdisc
= 1
2 MR

2 Ki +Ui = K f +U f
Ki=0
U f =0

⎯ →⎯⎯ Ui = K f → MgH = 1
2 MvCM

2 + 1
2 Iω

2 →

MgH = 1
2 MvCM

2 + 1
2 ( 12 MR

2 )ω2 → gH =
vCM
2

2
+ 1
4
ω2R2 v=ωR⎯ →⎯⎯

gH =
vCM
2

2
+
vCM
2

4
→ gH = 3

4
vCM
2 → vCM

2 = 4
3
gH→ vCM = 4

3 gH

Much like translational dynamics, rotational dynamics is governed by Newton’s 2nd Law of 
Motion.  However, instead of net force equal to the product of the object’s mass and acceleration, 
the net torque is equal to the product of the object’s moment of inertia and angular acceleration.

Rotational Dynamics 
Fnet = m

a
τnet = I

α

mpg

T1

T2

Fp
m1

m2

T2

T1 mp

Two blocks are connected by a light string over a pulley of mass mp and 
radius R.  Find the acceleration of mass m2 if m1 sits on a frictionless surface.

Strings with Massive Pulleys

m1g

N
T1

T2

m2g

FnetX = T1 = m1a

FnetY = m2g −T2 = m2a

T2 = m2g −m2a τnet = T2R −T1R = Iα

τnet = T2R −T1R = Iα T1=m1a
T2=m2g−m2a

⎯ →⎯⎯⎯ R(m2g −m2a −m1a) = Iα
Idisc=

1
2mpR

2

α= a
R

⎯ →⎯⎯⎯

R(m2g −m2a −m1a) = 1
2mpR

2 a
R

⎛
⎝⎜

⎞
⎠⎟
= 1
2mpaR→ m2g −m2a −m1a = 1

2mpa→

m2g = m1a +m2a + 1
2mpa→ m2g = a(m1 +m2 + 1

2mp )→ a =
m2g

m1 +m2 + 1
2mp
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AP-C Objectives (from College Board Learning Objectives for AP Physics)
Rotational Dynamics

Analyze problems involving objects that roll with and without slipping.

A disc of radius R rolls down an incline of angle θ without slipping.  Find the force of friction on the disc.
Rolling Without Slipping

R

H

Mg

N

f

N

f Mg sin
Mg cos

FnetY = N − Mg cosθ = 0

→ N = Mg cosθ
FnetX = Mg sinθ − f = Ma

τnet = fR = Iα I= 12MR
2

⎯ →⎯⎯ fR = MR
2α
2

a=Rα⎯ →⎯⎯ fR = MRa
2

→ f = Ma
2

Ma=Mg sinθ− f⎯ →⎯⎯⎯⎯

f = Mg sinθ − f
2

→ 2 f = Mg sinθ − f → 3 f = Mg sinθ→ f = Mg sinθ
3

A bowling ball of mass M and radius R skids horizontally down the alley with an initial velocity 
of v0.  Find the distance the ball skids before rolling given a coefficient of kinetic friction of µk.

Rolling With Slipping N

Mg

fkFnetX = − fk = Ma

FnetY = N − Mg = 0→ N = Mg

fk = µk N
N=Mg⎯ →⎯⎯ fk = µk Mg

− fk = Ma
fk=µk Mg⎯ →⎯⎯⎯ −µk Mg = Ma→ a = −µk g

v = v0 + at
a=−µkg⎯ →⎯⎯ v = v0 −µk gt

τnet = fk R = Iα fk=µk Mg
I= 25MR

2⎯ →⎯⎯⎯ µk MgR = 2
5 MR

2α→ µk g = 2
5 Rα→ α =

5µk g
2R

ω = ω0 +αt
α=
5µkg
2R

ω0=0
⎯ →⎯⎯ ω =

5µk g
2R

t

v = Rω

v0 −µk gt = R
5µk g
2R

t
⎛
⎝⎜

⎞
⎠⎟

v0 −µk gt =
5µk g
2
t

v0 −µk gt =
5µk g
2
t→ v0 = µk gt +

5µk g
2
t = 7

2µk gt→ t =
2v0
7µk g

Δx = x0 + v0t +
1
2 at

2 = v0
2v0
7µkg( )+ 1

2 (−µk g)
2v0
7µkg( )2 →Δx = 12v0

2

49µk g

Stops slipping
at this condition


