AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Rotational Kinematics

- a. Understand and apply relationships between translational and rotational kinematics.
- b. Use the right hand rule to determine the direction of the angular velocity vector.
v 2. Moment of Inertia
- a. Determine by inspection which set of symmetrical objects of equal mass has the greatest moment of inertia.
- b. Determine by what factor an object's moment of inertia changes if its dimensions are increased by a consistent factor.
- c. Calculate the moment of inertia for a collection of point masses, a thin rod of uniform density, and a set of coaxial cylindrical shells.
- d. State and apply the parallel-axis theorem (PAT).
v 3. Torque
- a. Calculate the torque on a rigid object.
- b. Apply conditions of translational and rotational equilibrium to analyze a rigid object under the influence of coplanar forces applied at different locations.
v 4. Rotational Dynamics
- a. Determine the angular acceleration of an object when an external torque or force is applied.
-b. Determine the radial and tangential acceleration of a point on a rigid object.
- c. Analyze problems involving strings and massive pulleys.
- d. Analyze problems involving objects that roll with and without slipping.
- 5. Conservation of Energy with Rotation
- a. Apply conservation of energy to problems of fixed-axis rotation.
- b. Apply conservation of energy to objects undergoing translational and rotational motion.

AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Rotational Kinematics

- a. Understand and apply relationships between translational and rotational kinematics.
- b. Use the right hand rule to determine the direction of the angular velocity vector.
- c. Calculate the area under a force versus time graph and relate it to the change in momentum of an object.

V Radians

Angular displacements $(\Delta \theta)$ can be measured in degrees $\left({ }^{\circ}\right)$ or in radians. One revolution is 360°, or 2π radians. The distance around a circle, known as the circumference, is equal to 2π multiplied by the length of the radius. This length is typically written as $\Delta \mathrm{s}$. You can convert from linear displacement to angular displacement using $\Delta s=r \Delta \theta$.

Velocity

Linear speed / velocity is given by v. Angular speed / velocity is given by $\boldsymbol{\omega}$. $\vec{v}=\frac{d \vec{s}}{d t} \quad \vec{\omega}=\frac{d \vec{\theta}}{d t}$

Translational vs. Rotational Variables

Variable	Translational	Angular
Displacement	$\Delta \mathrm{s}$	$\Delta \theta$
Velocity	v	ω
Acceleration	a	α
Time	t	t

Translational	Rotational
$v=v_{0}+a t$	$\omega=\omega_{0}+\alpha t$
$\Delta x=v_{0} t+\frac{1}{2} a t^{2}$	$\Delta \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$v^{2}=v_{0}^{2}+2 a \Delta x$	$\omega^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta$

$$
\begin{aligned}
& \text { A compact disc player is designed to vary } \\
& \text { the disc's rotational velocity so that the } \\
& \text { point being read by the laser moves at a } \\
& \text { linear velocity of } 1.25 \mathrm{~m} / \mathrm{s} \text {. What is the } \\
& \text { cD's rotational velocity in revs } / \mathrm{s} \text { when the } \\
& \text { laser is reading information on an inner } \\
& \text { portion of the disc at a radius of } 0.03 \mathrm{~m} \text { ? } \\
& \omega=\frac{v}{r}=\frac{1.25 \mathrm{~m} / \mathrm{s}}{0.03 \mathrm{~m}}=41.7 \mathrm{rad} / \mathrm{s} \\
& \frac{41.7 \mathrm{rad}}{s} \times \frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}=6.63 \mathrm{rev} / \mathrm{s}
\end{aligned}
$$

Conversion Between Translational and Rotational

Variable	Translational	Angular
Displacement	$s=r \theta$	$\theta=\frac{s}{r}$
Velocity	$v=r \omega$	$\omega=\frac{v}{r}$
Acceleration	$a=r \alpha$	$\alpha=\frac{a}{r}$
Time	t	t

A knight swings a mace of radius 1 m in two complete revolutions. What is the translational displacement of the mace?
(1) 3.1 m
(2) 6.3 m
(3) 12.6 m
(4) 720 m
(3) $s=r \theta=(1 m)(4 \pi$ rads $)=12.6 \mathrm{~m}$

Moment of Inertia

AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Moment of Inertia

- a. Determine by inspection which set of symmetrical objects of equal mass has the greatest moment of inertia.
- b. Determine by what factor an object's moment of inertia changes if its dimensions are increased by a consistent factor.
- c. Calculate the moment of inertia for a collection of point masses, a thin rod of uniform density, and a set of coaxial cylindrical shells.
- d. State and apply the parallel-axis theorem (PAT).
- Types of Inertia

Inertial mass, also known as translational inertia, (m), is an object's ability to resist a linear acceleration, which correlates to how much "stuff" makes up an object.
Moment of Inertia, also known as rotational inertia (I), describes an object's resistance to a rotational acceleration.
Objects that have most of their mass near their axis of rotation have a small rotational inertia, while objects that have more mass farther from the axis of rotation have larger rotational inertias.

Calculating Moment of Inertia (I)

$$
I=\sum m r^{2}=\int r^{2} d m
$$

v Moment of Inertia of a Uniform Rod About Its End and About Its Center
Find the moment of inertia of a uniform rod about its end, compare to the moment of inertia of the rod about its center.

Define a linear mass density, λ, equal to the total mass M divided by the length L. Then, $d m=\lambda d x$.

Rotating About the End
$I=\int r^{2} d m \xrightarrow{d m=\lambda d x} I=\int_{x=0}^{x=L} x^{2} \lambda d x \rightarrow$
$I=\lambda \int_{0}^{L} x^{2} d x=\lambda \frac{L^{3}}{3} \xrightarrow{\lambda=\frac{M}{L}} I=\frac{M}{L} \frac{L^{3}}{3} \rightarrow$
$I=\frac{1}{3} M L^{2}$

$$
\begin{aligned}
& \begin{array}{c}
\text { Rotating About the Center } \\
I=\int r^{2} d m \xrightarrow{d m=\lambda d x} I=\int_{x=-\frac{L}{2}}^{x=\frac{L}{2}} x^{2} \lambda d x \rightarrow \\
I=\lambda \int_{-\frac{L}{2}}^{\frac{L}{2}} x^{2} d x=\frac{\lambda}{3}\left(\frac{L^{3}}{8}-\frac{-L^{3}}{8}\right)=\frac{\lambda}{3} \frac{L^{3}}{4} \xrightarrow{\lambda=\frac{M}{L}}
\end{array} .
\end{aligned}
$$

$I=\left(\frac{M}{L}\right)\left(\frac{L^{3}}{12}\right) \rightarrow I=\frac{M L^{2}}{12}$

- Moment of Inertia of a Solid Cylinder

Find the moment of inertia of a uniform solid cylinder about its axis.

Define a volume mass density, ρ, as the total mass divided by the volume of the cylinder: $\rho=\mathrm{M} /\left(\pi \mathrm{R}^{2} \mathrm{~L}\right)$. A differential of mass, then, is the mass of a thin, hollow cylindrical shell of width dr and area $2 \pi \mathrm{rL}$. The total differential of mass, then, is the volume of the hollow cylindrical shell multiplied by the volume mass density, so $\mathrm{dm}=2 \pi \mathrm{rL}(\mathrm{dr})(\rho)$.

$$
\begin{aligned}
& I=\int r^{2} d m \xrightarrow{d m=2 \pi r L(d r)(\rho)} I=\int_{r=0}^{R} r^{2}(2 \pi \rho L r d r)= \\
& 2 \pi \rho L \int_{0}^{R} r^{3} d r=2 \pi \rho L \frac{R^{4}}{4} \xrightarrow{\rho=\frac{M}{\pi R^{2} L}} I=\frac{2 \pi L M R^{4}}{4 \pi R^{2} L} \rightarrow \\
& I=\frac{1}{2} M R^{2}
\end{aligned}
$$

$$
I_{l}=I_{l}+m d^{2}
$$

> - Example: Find Moment of Inertia of a Rod About One End using PAT Given the moment of inertia of a rod around its center ($\mathrm{I}=\mathrm{ML}^{2} / 12$), use the PAT to find the moment of inertia of a rod about its end.

$$
\begin{aligned}
& I_{\text {end }}=I_{\text {center }}+m d^{2}=\frac{M L^{2}}{12}+M\left(\frac{L}{2}\right)^{2} \rightarrow \\
& I_{\text {end }}=\frac{M L^{2}}{12}+\frac{M L^{2}}{4}=\frac{M L^{2}}{3}
\end{aligned}
$$

Torque

AP-C Objectives (from College Board Learning Objectives for AP Physics)
v 1. Torque

- a. Calculate the torque on a rigid object.
- b. Apply conditions of translational and rotational equilibrium to analyze a rigid object under the influence of coplanar forces applied at different locations.

$$
\begin{aligned}
& \text { Translational vs. Rotational N2Law } \\
& \vec{F}_{n e t}=m \vec{a} \\
& \vec{\tau}_{n e t}=I \vec{\alpha}
\end{aligned}
$$

V Equilibrium

Static equilibrium implies that the net force and the net torque are zero, and the system is at rest.

Dynamic equilibrium implies that the net force and the net torque are zero, and the system is moving at constant translational and rotational velocity.

- See Saw Sample Problem

A 10-kg tortoise sits on a see-saw 1 meter from the fulcrum. Where must a $2-\mathrm{kg}$ hare sit in order to maintain static equilibrium? What is the force on the fulcrum?

$$
\begin{aligned}
& \vec{\tau}_{\text {net }}=I \vec{\alpha}=0 \rightarrow \\
& (10 g)(1 \mathrm{~m})-(2 g) x=0 \rightarrow \\
& x=5 m \\
& \vec{F}_{\text {net }}=m \vec{a}=0 \rightarrow \\
& -10 g+F_{\text {fulcrum }}-2 g=0 \rightarrow \\
& F_{\text {fulcrum }}=12 g=120 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { V Beam Sample Problem } \\
& \begin{array}{l}
\text { A beam of mass } M \text { and length } L \text { has a moment of inertia about its } \\
\text { center of } M L 2 / 22 \text {. The beam is attached to a frictionless hinge at } \\
\text { an angle of 45 and allowed to swing freely. Find the beam's } \\
\text { angular acceleration. }
\end{array} \\
& \tau_{\text {net }}=I \alpha \rightarrow-M g \cos \theta\left(\frac{L}{2}\right)=I \alpha \rightarrow \alpha=\frac{-M g \cos \theta L}{2 I} \xrightarrow{I=\frac{M L^{2}}{3}} \alpha=\frac{-3 g \cos \theta}{2 L}+I_{\text {end }}=\frac{M L^{2}}{12}+M\left(\frac{L}{2}\right)^{2}=\frac{M L^{2}}{3} \\
& \hline
\end{aligned}
$$

V Non-Ideal Pulley with Mass Problem	$\begin{gathered} m g-T=m a \xrightarrow{T=\frac{1}{2} m_{p} a} \rightarrow m g-\frac{1}{2} m_{p} a=m a \rightarrow \\ m g=a\left(m+\frac{m_{p}}{2}\right) \rightarrow a=\frac{m g}{m+\frac{m_{p}}{2}} \end{gathered}$
A light string attached to a mass m is wrapped around a pulley of mass m_{p} and radius R. Find the acceleration of the mass.	
$\begin{aligned} & \tau_{\text {net }}=I \alpha \xrightarrow[I=\frac{1}{2} m_{a} R^{2}]{\tau=R T} R T=\left(\frac{1}{2} m_{p} R^{2}\right) \alpha \rightarrow \\ & T=\frac{1}{2} m_{p} R \alpha \xrightarrow{a=R \alpha} T=\frac{1}{2} m_{p} a \end{aligned}$	

Rotational Dynamics

AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Rotational Dynamics

- a. Determine the angular acceleration of an object when an external torque or force is applied.
- b. Determine the radial and tangential acceleration of a point on a rigid object.
- c. Analyze problems involving strings and massive pulleys.
v 2. Conservation of Energy with Rotation
- a. Apply conservation of energy to problems of fixed-axis rotation.
- b. Apply conservation of energy to objects undergoing translational and rotational motion.

v Conservation of Energy

Because objects may have both translational and rotational kinetic energy, we must now take into account that the total kinetic energy of an object is the sum of its translational kinetic energy (use the velocity of the center of mass) and its rotational kinetic energy (using the moment of inertia about its point of rotation).

$$
\begin{aligned}
& K_{\text {translational }}=\frac{1}{2} m v^{2} \\
& K_{\text {rotational }}=\frac{1}{2} I \omega^{2} \\
& K_{\text {total }}=K_{\text {translational }}+K_{\text {rotational }}
\end{aligned}
$$

Energy Conservation with Rolling

Find the speed of a disc of radius R which starts at rest and rolls down an incline of height H .

$$
\begin{aligned}
& K_{i}+U_{i}=K_{f}+U_{f} \xrightarrow[U_{f}=0]{K_{i}=0} U_{i}=K_{f} \rightarrow M g H=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2} I \omega^{2} \rightarrow \\
& M g H=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega^{2} \rightarrow g H=\frac{v_{C M}^{2}}{2}+\frac{1}{4} \omega^{2} R^{2} \xrightarrow{v=\omega R} \\
& g H=\frac{v_{C M}^{2}}{2}+\frac{v_{C M}^{2}}{4} \rightarrow g H=\frac{3}{4} v_{C M}^{2} \rightarrow v_{C M}^{2}=\frac{4}{3} g H \rightarrow v_{C M}=\sqrt{\frac{4}{3} g H}
\end{aligned}
$$

v Rotational Dynamics

Much like translational dynamics, rotational dynamics is governed by Newton's 2nd Law of Motion. However, instead of net force equal to the product of the object's mass and acceleration, the net torque is equal to the product of the object's moment of inertia and angular acceleration.

$$
\begin{aligned}
& \vec{F}_{\text {net }}=m \vec{a} \\
& \vec{\tau}_{\text {net }}=I \vec{\alpha}
\end{aligned}
$$

v Strings with Massive Pulleys

Two blocks are connected by a light string over a pulley of mass m_{p} and radius R. Find the acceleration of mass m_{2} if m_{1} sits on a frictionless surface.

$$
F_{n e t_{Y}}=m_{2} g-T_{2}=m_{2} a
$$

$$
F_{n e t_{X}}=T_{1}=m_{1} a
$$

$$
T_{2}=m_{2} g-m_{2} a
$$

$$
\tau_{n e t}=T_{2} R-T_{1} R=I \alpha
$$

$\tau_{\text {net }}=T_{2} R-T_{1} R=I \alpha \xrightarrow[T_{2}=m_{2} g-m_{2} a]{T_{1}=m_{1} a} R\left(m_{2} g-m_{2} a-m_{1} a\right)=I \alpha \xrightarrow[\alpha=\frac{a}{R}]{I_{\text {disc }}=\frac{1}{2} m_{p} R^{2}}$
$R\left(m_{2} g-m_{2} a-m_{1} a\right)=\frac{1}{2} m_{p} R^{2}\left(\frac{a}{R}\right)=\frac{1}{2} m_{p} a R \rightarrow m_{2} g-m_{2} a-m_{1} a=\frac{1}{2} m_{p} a \rightarrow$
$m_{2} g=m_{1} a+m_{2} a+\frac{1}{2} m_{p} a \rightarrow m_{2} g=a\left(m_{1}+m_{2}+\frac{1}{2} m_{p}\right) \rightarrow a=\frac{m_{2} g}{m_{1}+m_{2}+\frac{1}{2} m_{p}}$

AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Rotational Dynamics

- a. Analyze problems involving objects that roll with and without slipping.

Rolling Without Slipping

A disc of radius R rolls down an incline of angle θ without slipping. Find the force of friction on the disc.

- Rolling With Slipping

A bowling ball of mass M and radius R skids horizontally down the alley with an initial velocity of v_{0}. Find the distance the ball skids before rolling given a coefficient of kinetic friction of μ_{k}.

$$
\tau_{\text {net }}=f_{k} R=I \alpha \xrightarrow{\frac{f_{k}=\mu_{\mu} M g}{I=\frac{5}{5} M R^{2}}} \mu_{k} M g R=\frac{2}{5} M R^{2} \alpha \rightarrow \mu_{k} g=\frac{2}{5} R \alpha \rightarrow \alpha=\frac{5 \mu_{k} g}{2 R}
$$

$$
-f_{k}=M a \xrightarrow{f_{k}=\mu_{k} M g}-\mu_{k} M g=M a \rightarrow a=-\mu_{k} g
$$

$$
\begin{aligned}
& \begin{array}{l}
F_{\text {net }_{x}}=-f_{k}=M a \\
F_{\text {net }_{y}}=N-M g=0 \rightarrow N=M g \\
f_{k}=\mu_{k} N \xrightarrow{N=M g} f_{k}=\mu_{k} M g
\end{array} \\
& f_{k}=\mu_{k} N \xrightarrow{N=M g} f_{k}=\mu_{k} M g
\end{aligned}
$$

