AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Motion in one dimension
v a. Students should understand the general relationships among position, velocity, and acceleration for the motion of a particle along a straight line, so that

- i. Given a graph of one of the kinematic quantities, position, velocity, or acceleration, as a function of time, they can recognize in what time intervals the other two are positive, negative, or zero and can identify or sketch a graph of each as a function of time.
- ii. Given an expression for one of the kinematic quantities, position, velocity, or acceleration, as a function of time, they can determine the other two as a function of time, and find when these quantities are zero or achieve their maximum and minimum values.
v b. Students should understand the special case of motion with constant acceleration, so they can:
- i. Write down expressions for velocity and position as functions of time, and identify or sketch graphs of these quantities.
v ii. Use the equations below to solve problems involving one-dimensional motion with constant acceleration
- 1. $v=v_{0}+a t$
-2. $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
- 3. $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
- iii. Students should know how to deal with situations in which acceleration is a specified function of velocity and time so they can write an appropriate differential equation and solve it for $\mathrm{v}(\mathrm{t})$ by separation of variables, incorporating correctly a given initial value of v.

Objectives

1. Given a graph of one of the kinematic quantities, position, velocity, or acceleration, as a function of time, they can recognize in what time intervals the other two are positive, negative, or zero and can identify or sketch a graph of each as a function of time.
2. Given an expression for one of the kinematic quantities, position, velocity, or acceleration, as a function of time, they can determine the other two as a function of time, and find when these quantities are zero or achieve their maximum and minimum values.

v Position / Displacement

An object's position is its location at a given point in time. The vector from the origin of the coordinate system to the object's position is known as the position vector, \mathbf{r}.

As an object moves, its position changes, This change in position is called displacement, $\Delta \mathbf{r}$.
$\Delta r=r_{f}-r_{i}$

$$
\Delta r=r-r_{0}
$$

Position and displacement are both vectors, they have magnitude and direction.
In one dimension, position is given by the x-coordinate, and displacement by $\Delta \mathbf{x}$

$\boldsymbol{\nabla}$ Acceleration
acceleration is the rate at which velocity changes.

$a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$

$$
a_{a v}=\frac{\Delta v}{\Delta t}
$$

$$
\begin{aligned}
& \text { Polynomial Derivatives } \\
& \begin{array}{|ll}
x=A t^{n} & \frac{d x}{d t}=n A t^{n-1}
\end{array}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& x(t)=2-4 t+2 t^{2}-3 t^{3} \\
& v=\frac{d x}{d t}=-9 t^{2}+4 t-4 \\
& a=\frac{d^{2} x}{d t^{2}}=-18 t+4
\end{aligned}
$$

Objectives

- 1. Write down expressions for velocity and position as functions of time, and identify or sketch graphs of these quantities.
マ 2. Use the equations below to solve problems involving one-dimensional motion with constant acceleration.
- a. $v=v_{0}+a t$
-b. $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
- c. $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

V Using Kinematic Equations

When you know any three kinematic quantities with constant acceleration, you can solve for the other two.

v Relative Velocity

An F-16 refueling in mid-air is moving at ~ 300 knots with respect to the Earth. The tanker aircraft also moves at 300 knots with respect to the Earth. With respect to the tanker, the F-16 has a velocity of zero.

